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LETTER TO THE EDITOR 

Algebraic invariants of the O(2) gauge transformation 

J H H Perkt, F Y WuS and X N WuS 
t Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA 
$ Department of Physics, Northeastern University, Boston, MA 02115, USA 

Received 1 November 1989 

Abstract. We consider the O(2) gauge transformation for a two-state vertex model on a 
lattice, and derive its fundamental algebraic invariants, the minimal set of homogeneous 
polynomials of the vertex weights which are invariant under O(2)  transformations. Explicit 
expressions of the fundamental invariants are given for symmetric vertex models on lattices 
with coordination number p = 2, 3,  4, 5, 6, generalising p = 3 results obtained previously 
from more elaborate considerations. 

In a study of the symmetry properties of discrete spin systems, Wegner [ I ]  introduced 
a gauge transformation generalising the weak-graph transformation used by earlier 
investigators [2-41. The gauge transformation, which describes important symmetry 
properties including the usual duality relation [3], is a linear transformation of the 
weights of a vertex model under which the partition function remains invariant. One 
particular symmetry property studied for over a century [ 5 ]  is the construction of 
algebraic invariants, the homogeneous polynomials invariant under linear transforma- 
tions. The problem of constructing invariants for the gauge transformation in vertex 
models has been studied by Hijmans er a l [6 ,7 ]  for the square lattice and, more recently, 
by Wu et a1 [8] and by Gwa [9] for the O(2) transformation on trivalent lattices. 
Specifically, Wu et al [8] proposed that the critical frontier of the Ising model in a 
non-zero magnetic field is given by the algebraic invariants of the related vertex model, 
and constructed the invariants by enumeration for trivalent lattices. A simpler method 
leading to the same invariants was later given by Gwa [9]. But the extension of both 
of these analyses to lattices of general coordination number p has proven to be extremely 
tedious, becoming almost intractable for p > 4. Clearly, an alternative and simpler 
approach is needed. 

In this letter we consider the O(2) gauge transformation for a two-state vertex 
model on a lattice of general coordination number p ,  and present a formulation which 
leads to a simple and direct determination of its algebraic invariants. 

We first define the vertex model and the O(2) gauge transformation. Consider a 
lattice of coordination number p ,  with the lattice edges in one of two distinct states 
independently at each edge. We may regard the edges as being either ‘empty’ or 
‘covered’ by a bond, so that the edge configurations generate bond graphs [lo]. 
Introduce edge variables s = 0, 1 so that s = 0 (s  = 1) denotes the edge being empty 
(covered). With each lattice site associate a vertex weight W ( s , ,  s2,. . . , sp ) ,  where 
sl, s2, . . . , sp indicate the states of the p incident edges. The partition function of this 
two-state vertex model is 
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where the summation is taken over all bond graphs of the lattice, and the product is 
taken over all vertices i. 

Consider a linear transformation of the 2p vertex weights W(s,, s2 , .  . . , sp) ,  

1 1  

col, t2,. . . , t p ) =  c c * * * i RflSIR12S2 - * * RrpspW(S1, s2, * * ,  sp) .  (2) 
s , = o  s*=0  s,=o 

The transformation (2) leales the partition function invariant if R,, are elements of a 
2 x 2  matrix R satisfying R R =  I, where I is the identity matrix [l]. This implies 
detlR,,I = f l ,  and therefore the transformation (2) provides a representation of the 
two-dimensional orthogonal group 0(2) ,  to be referred to as the O(2) gauge transfor- 
mation. 

The O(2) group is generated by a rotation R") or a reflection R'2' given by 

>. (3) 
cos 8 sin 8 ( sin 8 -cos 8 ( sin 8 cos 8 

cos 8 -sin 8 R(2) = ) R(l )  = 

Note that R"' has been used exclusively in previous investigations [ 2,4,8]. 

covered incident edges, for which we have 
For symmetric vertex models, the vertex weights depend only on the number of 

W(SI , s 2 ,  * * , sp)  = WP(S) s = S , + S 2 + .  . . +sp  (4) 

where s = 0,1,2 . . . , p is the number of bonds incident at the vertex. We shall, however, 
continue to assume general vertex weights, and only below specialise the results to 
symmetric vertex models. 

Hilbert [ 5 ,  see also p 235 of Gurevich in [5]] established more than a century ago 
that invariants of a linear transformation are in the form of homogeneous polynomials, 
and that all such polynomials are expressible in terms of a minimal set of fundamental 
ones. The crux of the matter is, of course, the determination of these fundamental 
invariants for a given linear transformation. For the O(2) transformation, as we now 
show, the task can be accomplished as follows. 

Introduce the change of basis 

where 0, = f 1. For example, for p = 2, ( 5 )  is 

A,, = [ W(O0) - W(ll)]*i[ W(Ol)]+ W(lO)] 

A,, =[ W(OO)+ W(ll)]Ti[W(Ol)- w(1O)l. 

In a similar fashion we define &. . . up in terms of %(s1,. . . , sp) .  Then, using the 
identity 

1 

1=1,2  (7) (ia)lRlj) = (-I)'('-') eiu'(im)s 
1=0 

where Rlf' are elements of R") or R(') given by (3), one obtains from ( 5 )  and (2) the 
following transformation property for the A: 
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where A(') is the A obtained from (5) by using in (2) with R = R"), 1 = 1,2, and A* 
is the complex conjugate of A. For I = 1, the As change only by a phase factor under 
the O(2) transformation. It follows that any product of the As, for which the us of 
all A factors in the product add to zero, is an invariant. For 1 = 2, however, the products 
are transformed into complex conjugates, in addition to the change of a phase factor. 
Thus, in both cases the real parts of these products are invariant, and the imaginary 
parts are invariant under R") while changing sign under R"). We shall, however, refer 
to both the real and imaginary parts as the invariants. 

For a given p, the fundamental invariants can now be constructed by following the 
above prescription. For p = 2, there are three fundamental invariants A++A-- , A+- , 
and A-+ , the last two being the complex conjugates of each other; any other invariant 
is composed of the three. For p = 3, our consideration leads to 30 distinct products, 
examples of which are A+++A--- , A++-A+--, A:+-A+-+A---, and A:+-A _--. This 
gives rise to 30 homogeneous polynomials which are invariant under R"), and either 
invariant or changing sign under R'2'. 

It is shown above that fundamental invariants for the general O(2) gauge transforma- 
tion (2) can be constructed in a straightforward fashion. We now specialise the 
consideration to the symmetric vertex model (4) for which the situation is considerably 
simpler. 

Using (4) and (5), we have 

A 'TI . . .up=AP(f )  

where t = u1 + u2.  . . + up = *p,  * ( p  -2), . . . , *1 or 0; m 3 (p + r)/2, n = (p - t)/2, and 
SKr is the Kronecker delta function. Note that the coefficient of Wp(s) in (9) is the 
coefficient of zs in the expansion of (1 +iz)"(l -iz)". It follows that (8) becomes 

It is straightforward to write down the explicit expressions of AP( t )  using (9). 
Adopting the notation [4,8] of denoting vertex weights by a, 6, c y . .  . such that a is the 
weight of vertices having no incident bonds, 6 the weight of vertices having one incident 
bond, etc, we find for p = 2,3, .  . . , 6  

A2(*2) = a - c*2ib 

A3(*3) = a -3c*i(36 -d)  
A4(*4) = a - 6 c +  e *4i(b - d)  
A4(0) = a + 2c + e 

A2(0) = a + c 

A3(*1) = a + c*i(b+ d )  

A4(*2) = a - e *2i(b + d )  

A5(*5) = a - lOc+5e * i(5b - 10d +f) (11) 
A5(*3) = a -2c - 3e * i(3b +2d -f) 
A5(*1) = a +2c+ e * i(6 +2d +f) 
A6( *6) = a - 15c + 15e - g * 2i(3 6 - 10d + 3f) 

A6(*4) = a - 5c - 5e + g *4i( 6 -f) 
A6(*2) = a + c - e - g*2i(b +2d +f) 
&(0) = U + 3C + 3e + g. 
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As dictated by (lo),  the fundamental invariants for each p are now constructed by 
forming products of Ap( t ) ,  such that the sum of all t variables in the product vanishes. 
Adopting the notation ( t ) = A p ( t )  for each p, we find the following fundamental 
invariants for p = 2,3, . . . , 6 :  

p = 2 :  (2N-2); (0) 

p = 3 :  (3H-3); (1)(-1); (3)(--113, (-3)(1)3 

p = 4 :  (4)(-4); (2)(-2); (0); (4)(-212, (-4)(212 

p = 5 :  ( 5 ) ( - 5 ) ;  ( 3 ~ - 3 ) ;  ( i ) ( - o ;  ( 5 ~ ) ~ ~  (-5)(1)5; ( 3 ) ( - 0 3 ,  ( - 3 ~ 1 1 ~ ;  

(5)(-3)(- 1 12, (-5)(3)( 112; 

(5)2(-1)(-3)3, (-5)2(1)(3)3; (5)3(-3)5, (-5)'(3)' 

p = 6 :  (6)(-6); (4)(-4); (2N-2); (0); (6)(-2)(-4), (-6)(2)(4); 

( 5 ) (  1 -312, ( - 5 ) ( -  1 )(312; 

(4)(-212, (-4)(2)'; (6)(-2)3, (-6)(213; (6)(2)(-4)2, (-6)(-2)(4)2; 

(6)2( -4)3, ( -6)'(4)3. 

Since ( t )  and (- t )  are complex conjugates of each other, the fundamental invariants 
always occur in conjugate pairs (except (0) and ( t ) ( - t )  which are real), and we can 
consider the real and imaginary parts individually. Both the real and imaginary parts 
are invariant under R"), and the real parts are invariants and the imaginary parts 
change sign under R'2'. For p = 3, e.g., there are four polynomials: 

I1 = (3)( -3) = ( U  - 3 ~ ) ' +  (3b - d ) 2  

1 2 = ( 1 ) ( - 1 ) = ( u + c ) 2 + ( b + d ) 2  
(12) 

I3 = Re(3)(-1)3 = Re{[u -3c+i(3b -d)][u+ c-i(b+d)13} 

I4 = Im(3)(-1)3 = Im{[u -3c+  i(3b - d)][u + c - i (b+ d)I3} 

for which I,, 12, and Z3 are invariant under both R") and and I4 is invariant 
under R(') while changing sign under R('). 

We have considered the O( 2) gauge transformation for a general two-state vertex 
model on an arbitrary lattice, and constructed its fundamental algebraic invariants. 
For the symmetric vertex model on a lattice of coordination number p, our analysis 
shows that there are, respectively, 2, 4, 5, 15, and 14 fundamental algebraic invariants 
for p = 2, 3, 4, 5, and 6. These invariants are explicitly given in (11 ) .  In the case of 
p = 3, we have verified that the fundamental invariants P, Q, PI, P2 and P3 obtained 
previously [8,9] can indeed be expressed in terms of those in (12). The relations are 
P=(912-I , ) /8 ,  Q=(11-12)/8,  P1 = IJ4, P2=(7213- I~+30ZlZz+27Z~)/64, and P3= 
(-8 I3 - I :  + 61, I2  + 3 1:)/64. Note that PI changes sign under R"), a fact previously 
observed [8]. For p = 4, we have also verified that the five fundamental invariants 
deduced from the ones obtained by Hijmans et al [6,7] can be expressed in terms of 
those in ( 1  1 ) .  The same set of p = 4 fundamental invariants have also been obtained, 
after considerable algebraic manipulation, by extending the analyses of Wu et a1 [8] 
and Gwa [9], but the method of Gwa no longer retains its simplicity for p = 3. Both 
methods, however, become almost intractable for p > 4. 

Finally, we point out the existence of syzygies, polynomial relations between the 
linearly independent invariants. We have seen that all invariants for a given p are 
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products of p + 1 polynomials AP( t ) .  It follows that there must exist relations, or 
syzygies, among these invariants, if the number of invariants exceeds p. Explicit 
expressions of syzygies are usually very difficult to construct, but they are easily 
identified in the present formulation. For p = 3 and 4, e.g., the numbers of fundamental 
invariants are, respectively, 4 and 5 ,  and hence there is one syzygy in each case. 
Explicitly, we find 

[(3)(-1)31[(-3)(1)31 = r(3)(-3)lr(1)(-1)13 f o r p = 3  

r(4)(-2)21[(-4)(2)21 = [(4)(-4)1[(2)(-2)12 for p = 4. 
(13) 

Similarly, there are ten syzygies for p = 5  and eight for p = 6 ;  all can be similarly 
constructed. 

This research was supported by National Science Foundation grants DMR-8702596 
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